PHYSICAL REVIEW E 72, 061101 (2005)

Hopping models of charge transfer in a complex environment: Coupled memory continuous-time

random walk approach

Ewa Gudowska-Nowak,' Kinga Bochenek,' Agnieszka Jurlewicz,” and Karina Weron®

"Warian Smoluchowski Institute of Physics Jagellonian University, ul. Reymonta 4, 30-059 Krakow, Poland

2Hugo Steinhaus Center for Stochastic Methods and Institute of Mathematics and Computer Science, Wroctaw University of Technology,

ul. Wybrzeze Wyspianskiego 27, 50-370 Wroctaw, Poland
3Institute of Physics, Wroctaw University of Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroctaw, Poland
(Received 15 September 2004; revised manuscript received 13 May 2005; published 8 December 2005)

Charge transport processes in disordered complex media are accompanied by anomalously slow relaxation
for which usually a broad distribution of relaxation times is adopted. To account for those properties of the
environment, a standard kinetic approach in description of the system is addressed either in the framework of
continuous-time random walks (CTRWSs) or fractional diffusion. In this paper the power of the CTRW ap-
proach is illustrated by use of the probabilistic formalism and limit theorems that allow one to rigorously
predict the limiting distributions of the paths traversed by charges and to derive effective relaxation properties
of the entire system of interest. In particular, the standard CTRW scenario is generalized to a new class of
coupled memory CTRW:s that effectivly can lead to the well known Havriliak-Negami response. Application of
the method is discussed for nonexponential electron-transfer processes controlled by dynamics of the surround-

ing medium.
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I. INTRODUCTION

The stochastic formulation of transport phenomena in
terms of a random walk process, as well as the description
via the deterministic diffusion equation are two fundamental
concepts in the theory of diffusion in complex systems. The
best known examples are charge transport in amorphous
semiconductors, rebinding kinetics in proteins, polarization
fluctuations in inhomogeneous solvents, diffusion of con-
taminants in complex geological formations, and diffusion of
pollutants in large ecosystems. In all realms mentioned
above, the complex structures, characterized by a large di-
versity of elementary units and strong interaction between
them, exhibit a nonpredictable or anomalous temporal evo-
lution. The possibility of the dual description of the anoma-
lous dynamical properties of such systems, based either on
the random motion or on the differential equations for the
probability density functions, has been considered in litera-
ture since the late 1960s and gave rise to an extensive list of
developed models [1-3].

In this paper we demonstrate the power of the mathemati-
cal tools underlying the concept of a continuous-time ran-
dom walk (CTRW) by showing how the tool can be gener-
alized to handle complicated situations such as diffusion-
reaction schemes in complex system. The notion of the
CTRW, a walk with a waiting time distribution governing the
time interval between subsequent jumps of a random walker,
has been introduced by Montroll and Weiss [1]. The distri-
bution of waiting times may stem from possible obstacles
and traps that delay the particle’s motion and as a conse-
quence, introduce the memory effect into the kinetics. Espe-
cially fascinating in this approach was the idea of an infinite
mean time between the jumps as in such a case a character-
istic time scale of the process looses its common sense. This
novel concept has been used by Montroll and Scher [4] to
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give a first explanation of experiments measuring transient
electrical current in amorphous semiconductors. Since then
the CTRW formalism has been successfully applied to de-
scribe fully developed turbulence, transport in fractal media,
intermittent chaotic systems, and relaxation phenomena. The
common feature of the abovementioned applications is that
they exhibit anomalous diffusion manifested by a non-
Gaussian asymptotic distribution (propagator, diffusion
front) of a distance reached at large times.

At the level of the CTRW modeling, the diverging mean
waiting time leads to a subdiffusive motion with the mean
square displacement growing as {r*(f))et* with 0<a<1.
When applied to the theory of Brownian motion, the CTRW
scenario leads to the fractional diffusion equation [5,6] that
can be treated on an equal footing with the framework used
for systems with normal diffusion.

Usually, in applications of the CTRW ideology, the analy-
sis of the asymptotic distribution is presented within the ap-
proach that is based on a formal expression for the Fourier-
Laplace transform of the propagator, or otherwise, use of the
fractional calculus is required [3] as a legitimate tool. Here,
we present an approach to a random walk analysis which is
based directly on the definition of the cumulative stochastic
process. Our aim is to show that despite the extensive studies
on CTRWs and their long history in physics, the powerful
tool of the limit theorems [7] hidden behind the derivation of
limiting distributions, has not been fully explored yet. We
emphasize the possibilities of applications of that scenario in
stochastic modeling of physical systems, in particular, in de-
scription of the charge transport in disordered materials. The
main objective is to present a clear random walk scheme
leading to the nonexponential polarization relaxation ex-
pressed in terms of the well-known Havriliak-Negami func-
tion. Our effort is therefore directed toward bringing into
light statistical conditions underlying the rigorous results and
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to dicuss their physical content. A starting point in the
CTRW analysis is the definition of a total path R(z) of a
particle traversed up to the time ¢ in accumulating number
L(?) of jumps of a length R;. The (generally random) number
of jumps exerted in time ¢ can be defined either directly by
assuming a specific counting process L(z) (with, e.g., Pois-
son, negative binomial, geometric, etc., count distribution) or
indirectly by assuming the distribution of waiting times 7;
between the jumps. In both approaches, under certain as-
sumptions concerning the distribution of jumps R; and the
distribution of waiting times 7 [or number of jumps L(7)],
the asymptotic distribution of the total path R(z) reached up
to time ¢ can be obtained by applying limit theorems of the
probability theory. In contrast to the more popular Tauberian
analysis of the Fourier-Laplace transform of R(z), such an
approach precisely identifies classes of possible limiting dis-
tributions and offers an easy-to-follow scheme of generating
various limiting results.

The paper is organized as follows. We begin in Sec. II
with a brief discussion of models of nonexponential dielec-
tric relaxation and their relation to solvent (medium) dynam-
ics influencing the rates of the long-range electron transfer.
Further, as a generalization of the McConnell formula we
incorporate medium fluctuations in the expression for the
electronic transfer matrix. Its form is analyzed in terms of an
exponential of a sum of independent and identically distrib-
uted (IID) random variables with a random number L of
virtual jumps between the donor and acceptor sites. By as-
suming the deviations from equilibrium of the atomic coor-
dinates of a given pathway to be random contributions to the
sum, we are able to investigate asymptotic forms of the tun-
neling matrix elements. Sections III and IV pose the problem
in terms of a standard CTRW scenario which is generalized
(Secs. V and VI) for random walks subordinated to a com-
pound step-counting process. Main results and conclusions
of the analysis are presented in Secs. VII and VIIIL.

II. CHARGE TRANSPORT IN A COMPLEX
ENVIRONMENT

Charge transport processes determine a variety of phe-
nomena in physics, chemistry, and biology. The study of the
phenomenon has gradually developed together with general
progress in theoretical physics and in fast high-resolution
spectroscopy, so that contemporary research deals nowadays
with a broad class of systems, materials, and environmental
conditions. Of particular interest are the processes taking
place in disordered materials [8], such as amorphous semi-
conductors, randomly arranged molecular wires, glasses or
biological proteins where the charge transfer processes form
the elementary steps in energy transport, and production in
almost all living cells. In all those cases, the actual transport
process is coupled to local polarization fluctuations of the
environment. For the situations that the relaxation of the po-
larization fluctuations of the surrounding medium has a
simple “close-to-equilibrium” exponentially decaying form,
the main energetic contributions to the charge transfer pro-
cess come from the reorganization energy of the medium
[9.10]. In contrast, many observed charge transport pro-
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cesses, such as electron transfer (ET) in complex solvents
[5,8,11-16] and proteins [17-20], or gating Kinetics of bio-
logical channels [21], exhibit nonexponential kinetics result-
ing from the complex response to the interfering medium. A
classical example are higher alcohols, for which the fre-
quency dependent dielectric permittivity takes on a Cole-
Davidson (CD) [12] form

€(w)-e, 1

bep(w) = . = (1)

0~ €x (1 +iw/w,)?

with 0<y<1 and w, indicating the peak frequency of the
dielectric loss. The frequency-dependent dielectric permittiv-
ity corresponds to ¢(z), the correlation function of polariza-
tion fluctuations, by means of the Fourier transform

* N —iwt d
¢(w)=J0 e [— Ed>(w,,t)]dt. (2)

In the electron transfer (ET) theory, the time-correlation
function ¢(7) is related [9,10,22] to the excess polarization
fluctuations SE(z) which contribute to the total free energies
of the sites donoring and accepting the transferred charge

B(1) = ((BAE)*)”(SAESAE()). 3)

The variations of E(f) are expressed by the Coulombic po-
tential energy difference for a given configuration of all sol-
vent (intervening medium) molecules in the states of reac-
tants and products and are commonly identified with a
complex dynamic “reaction coordinate” describing the trans-
fer. In a convenient dipole-approximation for medium mol-
ecules, the potential energy difference AE would be given by
[22]

AE=- J dr-P()[Ep(r—rp) — Egr-1p)],  (4)

where P(r) stands for the medium orientational polarization
at position r. For a solvent in which the dipoles of the di-
electric medium relax with a single relaxation time T,
=1/w,, the complex dielectric permittivity (2) is given by
the Debye (D) function

€(w) - e, B 1

bp(w) = (5)

-6 | +io/w,
with ¢(r) expressed in terms of a single exponential function
with a decay time 7,. Other, equally likely fitted expressions
[15,16] exploited in dielectric spectroscopy of polymers and
disordered solids estimate relaxation of ¢(¢) by use of the
Cole-Cole (CC) [11] formula

N €(w) e, 1
= = 6
dec(@) € — €x 1+ (iw/w,)” (©)
or the Havriliak-Negami (HN) [13] function
N e(w) — €, 1
Pun(w) = (7)

- [1+(iw/w,)]”

where 0<a<1 and 0<y<1 are parameters determining
the characteristics of the dielectric relaxation with a repre-
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senting the width and 7y the skewness of the distribution of
relaxation times [13]. Although the generic physical reasons
for anomalous relaxation in complex systems are still under
debate, both static models based on the inhomogeneity of the
medium as well as the dynamic models, describing complex
local dynamical processes have been successfully employed
to describe relaxation behavior of fluctuations in such sys-
tems. In particular, the studies on the effect of protein dy-
namics on biological ET [9,19,20,23] have demonstrated
sensitivity of the long-distance tunneling mediated by the
protein matrix on atomic configurations of the surroundings
and pointed out possibility of an electron of emitting or ab-
sorbing phonons from the medium that would effectively re-
sult in an inelastic ET processes. In the forthcoming section,
we present a brief review of the ET issues leading to inter-
pretation of the charge transfer in terms of the generalized
random walk scenario.

III. ELECTRON TRANSFER MODELS AND THE
CTRW METHODOLOGY

In numerous chemical and biological examples of the ET
reaction [9,20,23], a single electron is tunneling in an inho-
mogeneous medium over large distances of several A. The
intervening medium can be either a protein backbone or a
sequence of cofactors embedded in a protein matrix. Due to
a large separation between the donor and acceptor, direct
electronic coupling between the chromophores is negligible,
rendering thus the question on the effect of medium on en-
hancement of the electronic coupling [17,18].

A possible realization of the long-distance ET process is a
transfer mediated through the medium which acts as a bridge
providing virtual states for the tunneling electron [24]. In
many situations, such as the nucleotide base stacks, the
charge transfer is effectively confined to one dimension.
However, the mechanisms of such charge transfer processes
are not fully understood and with respect to the long-range
molecular ET in DNA they have become a subject of a con-
stant debate [25].

The decay of the donor state occupation is commonly
described by systems of phenomenological balance equa-

tions

d(P() kK =k \(P(2)

- ==\ . (8)

dr\P,(1) -kt k P,(1)
which relate the experimentally observable decay of the do-
nor (acceptor) populations to the effective state-relaxation
rate constants k*~. In a standard ET theory approach [22,23]
after assuming a disentanglement of reactive tunneling from
the dynamics of diffusion, the elements of the evolution ma-
trix (8) have the form of

k+
k= ©)
1+ kyulkp + kyu/kp

where ky, describes the crossing (nonadiabatic) kinetics and
kp is the rate constant of the diffusion in the reactants’ (prod-
ucts’) basins. Note, that corresponding populations P »(¢) in
any of the electronic states (reactants or products) are dy-
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namical quantities usually measured in the electron transfer
kinetic experiment and are obtained by integrating the polar-
ization energy-dependent populations p(E,f) over configura-
tion variable E(z):

P(1) = J T E p(E.D). (10)

In general situations, where the matrix entries in Eq. (8) are
represented by time-dependent functions, the redistribution
of populations and consequently, the relaxation of electron-
donoring (accepting) states may follow a nonexponential
law. Accordingly, the frequency characteristics of dielectric
susceptibility y(w) connected to the temporal relaxation
function of the induced state-polarization P(7)= €x(w)E(?)
=€) € (w)—1]E(1), where E(t)=Eye" and the functional
character of the dielectric permittivity €'(w) may be inferred
from the analysis of relaxation of state populations in a fre-
quency domain

X(w)=J e d[- Py 5(1)]. (11)

0

Within the nonadiabatic-reaction approach corresponding to
a weak electronic coupling Tp, between the state of donor-
ing D and accepting A centers, the expression for the rate
reads

2
Ky = 7T%AQ(FC), (12)

where 9(FC) is the Franck-Condon nuclear factor represent-
ing weighted density distribution of energy gaps arising from
thermal excitations and associated with the nuclear modes
activation barrier. In a conventional theory the Condon ap-
proximation is assumed, i.e., the electronic coupling 7T, is
viewed as independent of the coordinates of the medium. To
account for thermal fluctuations of the bridge or random in-
tervening medium, the electronic coupling has to be a func-
tion of the modes of the medium. The simplest expression
that can be proposed in such a case is the McConnell formula
[23,24] which for a case of a linear bridge consisting of L
orbitals leads to the tunneling matrix 7p,

L
TDAzHéUﬂ (13)
j=1 €7 €

with e—¢; being the energy difference between the tunneling
energy and the energy of the bridging orbital j, and B;; de-
noting couplings between directly overlapping atomic orbit-
als of neighboring atoms within the bridge. The number of
orbitals, L, is equivalent to the number of virtual jumps per-
formed along the path. The above formula (13) constitutes
the essential part of the ET pathways models [18,23] in pro-
teins, where the calculation of the effective electronic cou-
pling is based on a general assumption that the electron wave
function decay is softer for propagating through a chemical
bond than through space jump. Since the coupling coeffi-
cients 3 are exponentially decaying functions of the distance
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between subsequent medium centers (atoms), the effective
tunneling matrix can be recast in the form

L

Tpa= DAH exp(— a;r ])
j=1

L
=7%Aexp( Ear): Aexp( ERJ-), (14)
j=1

where r; are fluctuations of the atomic coordinates of the
bridge, «; are constants characterizing strength of the cou-
pling to a particular bridge mode j, and T%A corresponds to
the average, equilibrium tunneling matrix. Such a represen-
tation of the effective tunneling matrix allows to use the
notion of the continuous time random walk (CTRW) as a
very convenient mathematical tool to analyze the decay with
time of the donor state occupation density. The CTRW gen-
eralizes a simple random walk by implementing a random
waiting time between jumps [1,4]. This stochastic process is
defined by the total distance R(r) reached by the particle at
time =0 if the movement is generated by a sequence
{(R;,T),j=1,2,...} assumed to be formed by IID random
vectors with R; specifying both the length and the direction
of the jth jump and 7;>0 denoting the waiting time for the
next jump. Note that T is a time spent by the particle in the
location EJ_IR,, reached as the result of j subsequent jumps.
CTRW is called decoupled if random variables 7; and R; are
independent and coupled if one incorporates statistical de-
pendence between time and space steps. The cumulative dis-
tance R(7) may be expressed as

L(1)

R(t)= 2 R;, (15)
Jj=1
where
!
L(H)=min) 1: 2, T; >t (16)
j=1

meaning that L(r) =1 iff Zl 1T <t<21 _1T;. The renewal pro-
cess

E T,l=1.2, ... (17)

represents the instants of time at which subsequent jumps
occur, hence the process {L(7),7=0} counts the jumps, and
L(r)=1 if exactly [ jumps occurred until time 7. The intro-
duced CTRW {R(t),t=0} is the discrete-time random walk
{E R;,t=0} subordinated to the renewal counting process
{L(t) t>0} defined by Eq. (16). In case of the one-
dimensional decoupled CTRW the space steps are indepen-
dent of the counting process, and the probability distribution
of R(r) can be given by its characteristic function which in
this case fullfils the equation

Pro(8) = ("FD) = @ ) [ or(s)], (18)

where @, (s) =(s"9) is the “nested” moment-generating
function of L(r) and ¢@g(s) is the characteristic function of R;.
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In the forthcoming sections we present a dynamic framework
which, within the CTRW scenario, leads to the empirically
observed non-exponential relaxation dynamics and anoma-
lous diffusion.

IV. PATHWAY ANALYSIS OF ET REACTIONS

As discussed above, with the matrix elements of a particu-
lar path T, the nature of disorder may be analyzed in terms
of fluctuations in couplings or, alternatively, in contributions
R; to the total distance traversed by a charge. In the frame-
work of the CTRW model, the total distance R(¢) has a form
given by Eq. (15). The properties of the CTRW process
{R(r),t=0} follow from the assumptions set on the probabil-
ity distributions of the random vectors (R;,T;) and, in gen-
eral, are very difficult to analytical studies. In its simplest
version, the decoupled CTRW with the exponential distribu-
tion of the waiting times between the jumps and the distri-
bution of the jump lengths with finite first moment and vari-
ance is known to have independent increments and,
consequently, the Markov property. In such a case, in a con-
tinuous limit one ends with the regular diffusion process of
charges. In this section, we examine another example of the
decoupled CTRWs with some chosen distributions of the
waiting times and the jump lengths. First, we consider the
case when the length R; of a given jump, and the waiting
time 7, elapsing between two corresponding successive
jumps are drawn as independent random variables with den-
sities

p(R)=pBe PR, R>0 (19)

and

1
o) =s1p(T31,1,0) = =T 2121, >0, (20)
N2

i.e., the model describes a charge moving only in one direc-
tion with a Poisson number of jumps needed to exceed the
level R and the Lévy-Smirnov [(1/2) stable] distribution of
waiting times. Here, for a stable distribution characterized by
the set of parameters a, 3,0, u (the stability index «, the
scale parameter o, the skewness B, and the shift w) we use
the notation s,(x;o,B,u) representing its density function
(for details, see the Appendix).

In the considered case, by means of the conditional prob-
ability, we obtain the explicit form of the probability density
function p(R)y of the total distance R(T) reached at time T.
Namely, for p,(i)=Pr[L(T)=i] being the probability to make
i steps until time T, and p,(R|i) standing for the conditional
probability density of R(T)= EL(T)R given L(T)=i we have

P(R)r= E p1(Dpy(Rli)
i=1

« R n 2 n+l
— E @e—ﬁR’_J‘ e—(y2/2T)dy (21)

n=0 n! 27T/,

since for the decoupled CTRW p»(R]i) is a density function
of 2% |R; that in the considered case has a gamma distribu-
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FIG. 1. Probability density function p(R)r, Eq. (21), of dis-
tances traversed up to the time T in a one-dimensional CTRW with

the waiting times assumed to have the Lévy-Smirnov distribution
(20).

tion resulting from a sum of i independent and exponentially
distributed random variables. The shapes of the obtained
density functions corresponding to some chosen values of T
are displayed in Fig. 1.

On the other hand, we can ask for another counting pro-
cess {L;(R),R=0} describing random numbers of forward
steps exerted by a particle before exceeding the fixed dis-
tance R. Hence

l

Li(R)=max{ : X R <R, (22)
j=1
i.e., we have
Ll(R) LI(R)+1
> Rj<R< X R, (23)
j=1 j=1

The random time 7(R) that the particle needs to exceed the
fixed distance R is given by T(R):EiL:ll(R)T,» with the waiting
time 7; being a time spent by a hopping charge at the loca-
tion E;-ZIRJ-. By means of a conditional probability, the prob-
ability density p(T)g for the distribution of time T(R) to
reach a distance R reads in accordance with the basic as-
sumptions of the CTRW [1] and analogically to Eq. (21) as

p(Dr= 2 pi(Hpa(T])), (24)
j=1

where in this case p;(j)=Pr[L;(R)=/] is the probability that
exactly j steps have been performed to reach the distance R,
and p,(T|j) is a conditional probability density of T(R)
=EiL:'1(R)T,» provided L,(R)=j. Due to the known properties of
sums of stable random variables, in the considered case, the
conditional probability density function p,(T|j) in Eq. (24)
is given by the probability density of a rescaled Lévy-
Smirnov distribution

po(T) =512(T;j%,1,0) (25)

resulting in
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FIG. 2. Probability density function p(T)g, Eq. (26), of time
needed to reach the distance R in a one-dimensional random walk
with the Lévy-Smirnov distribution (20) of waiting times for a
jump.

T-312 - (BR)j 5
p(Tg=e TZ—}., je . (26)
N2 j=0 J'

The shapes of the obtained density functions for some cho-
sen values of R are presented in Fig. 2.

The sketched problem describes a one-dimensional diffu-
sion among traps with a broad (asymptotically heavy-tailed)
distribution o(T) of trapping times. This type of the “an-
nealed” CTRW has been extensively studied in literature
[1,8,16,26,27]. Note that such a formulation is identical with
the assumption of a one-dimensional, biased (directed) ran-
dom walk performed in an amorphous medium under the
influence of a strong external field. Below, as another ex-
ample of CTRW, we study a three-dimensional analog with a
broken unidirectionality of the transfer that corresponds to a
weak external field approximation. Figure 3 displays results
of a three-dimensional CTRW computer simulation. Direc-
tion of a jump has been generated by sampling spherical
coordinates # and ¢ from uniform distributions defined on
intervals (0, 7/2) and (0,2), respectively. Quite arbitrarily,
the positive direction of the z axis have been favored by
sampling the coordinates of a point (¢, 8,—z) by using those

10°%
Jul
10%
10"t
10° 10° 10"
15000 — R=10
--- R=50
10000}
5000} e,
0 e Toel
0 100 200 300 400 T 500

FIG. 3. Probability density function p(T)g of time needed to
reach a distance R in a three-dimensional CTRW with the Lévy-
Smirnov distribution (20) (upper panel) and the Weibull distribution
(27) (lower panel) of waiting times for a jump.
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for (¢,0,z) and switching from z to —z with a probability
3/10. The upper panel of Fig. 3 refers to the distribution of
the time required to reach the distance R when the distribu-
tion of waiting times for the subsequent jump was assumed
in a form of a skewed (heavy-tailed) Lévy-Smirnov distribu-
tion describing higher probability of long trapping. In con-
trast, the lower panel represents the results of simulations for
a three-dimensional CTRW with a preferential short mean
time of waiting for a particle release from the trap, modeled
by an asymmetric Weibull distribution

o(T) = aT* '™, T>0, (27)

where 0 <a<1. Comparison of both sets of simulated data
points out a critical difference between the two Kinetic
schemes: particles which are preferentially trapped for short
times diffuse more efficiently and reach the same distance in
space in a much shorter time than the particles with a non-
zero probability of an infinite waiting time for a release from
a trap. Moreover, the probability density function p(T)g of
arrival times is characteristically overdispersed in such a
case, in contrast to the situation when the mean time of trap-
ping is preferentially short.

It is worthy mentioning here that the character of random
motion in complex media or on complex disordered struc-
tures depends strongly on the involved topologies and, de-
pending on the underlying microscopic dynamics, may result
in either subdiffusive [5,20] or superdiffusive [28,29] behav-
ior. For example, particles trapped in one of conformational
states of the multidimensional energy landscape of the pro-
tein may exhibit a power-law distribution of trapping time
[20] resulting in subdiffusion. In contrast, charge carriers
hopping along a polymer in a complex folding state may
jump to a neighboring location which is close in the Euclid-
ean space but far distant in chemical coordinates [28,29],
leading effectively to the superdiffusive (Lévy flight) motion.
This observation is further used to infer possible statistics of
R; and T, parameters in a generalized form of the CTRWs.

V. RANDOM WALK SUBORDINATED TO A COMPOUND
COUNTING PROCESS

As mentioned in the previous section, the statistical prop-
erties of CTRW processes are very difficult to study. Never-
theless, the behavior of the CTRW for long time or, equiva-
lently, of the rescaled process R(t/57)/f(d7) for the
characteristic time scale 57 decreasing to 0 [with an appro-
priately chosen rescaling function f(57)], can be determined
quite well. Systematic studies of the limiting total-distance
distributions for the one-dimensional CTRWs have pointed
on few possible distributions [30,31]. Recently, introducing a
new class of coupled memory CTRWs incorporating effects
of clustering of carrier trapping sites in a disordered material
under the study, a much broader class of possible limiting
distributions has been obtained [32]. The proposed new class
of the CTRW processes involves the idea of the aggregation
of M; subsequent steps of the initial decoupled CTRW, M
being a random number. Namely, to obtain a new, coupled
CTRW we transform some initial space/time-step sequence
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{(R;,T)),i=1,2,...} (with independent R; and T;) into a new
family {(R;,T}),j=1,2,...} by means of the following
“coarse-graining” procedure [32]

M,

(R_DTI) = E (Rh Ti)»
i=1

My+...+M;

R.T)= X

=M+ +M;_+1

(R,T), j=23,.... (28)

Formula (28) describes assembling space/time steps into
clusters of random sizes M|,M,, ... . The resulting random
vector (R;,T;) has a probability distribution given by the
joint characteristic function

@(s,y) = ("R = [ op 7(5,7)], (29)

where ®,,(s)=(s"/) is the “nested” moment-generating func-
tion of M, and ¢g 7(s,y) is the joint characteristic function
of (R;,T;). Assuming that {M;,j=1,2,...} is a sequence of
IID positive integer-valued random variables and that this
sequence is independent of the step family {(R;,T;),i
=1,2,...}, the spatiotemporal clustering (28) provides
{(R;,T}),j=1,2,...} being a sequence of IID random vectors

J
such that 7;>0. Therefore the resulting sequence can be

considered ails a new family of space/time steps that by means
of the general formula (16) leads to a new CTRW process.
Although no precise functional relation between the time and
space steps T; and R; is explicitly assumed, the nondegener-
ate distribution of M i the cluster sizes (i.e., the case when
random variable M; takes at least two different values with
positive probabilities), incorporates a stochastic dependence
between the steps. As a consequence, the CTRW {R(r),t
=0} resulting from the space/time-step family defined by
Eq. (28) is usually coupled. Moreover, it has an equivalent
form [32]

L(r)

R()= X R, (30)
k=1

of the discrete-time random walk {EE’:JIR :,t=0} subordinated

to the compound counting process {L(7),7=0} defined as
N[L(1)]
L= 2 M. (31)
j=1

Here the renewal counting process L(7) is as in Eq. (16) and
the random number of summands in Eq. (31) is given by

n

N(7) =min) n: 2, M;>r7 (32)
j=1

for 7 being an “operational” time (number of steps), as dis-
cussed, e.g., in Ref. [33].

Note, that the subordinated-random-walk form (30) of the
coupled CTRW process defined above shows that this pro-
cess can be treated as the walk with somehow modified time
lapses. Possible coupling between the space steps R; and the
modified time lapses is incorporated via the counting process
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(31) summing contributions to the cumulative distance R(r)
traversed during the walk. Since the space steps R; are inde-
pendent of the compound counting process L.(), the dis-
cussed form (30) of R(¢) allows us to calculate the character-
istic function of the cumulative-distance distribution.
Namely, similarly to Eq. (18), for the considered coupled
CTRW, we obtain

er(n(s) = Pr )l er(s)]. (33)

where @LC(,)(S) is the “nested” moment-generating function
of the compound counting process Lq(t), and @g(s), as in Eq.
(18), is the characteristic function of R;.

VI. DIFFUSION FRONT: LIMITING DISTRIBUTIONS

In this section we consider the coupled memory CTRW
{R(z),t=0} obtained from the clustered space/time step fam-
ily Eq. (28); however, we study the rescaled total distance of
such a walk

R(#/67)
flér) °

where O7 is the characteristic time scale, and f(87) is a re-
scaling function chosen appropriately. Applying limit theo-

Rs(1) = (34)

rems [32,34] one can evaluate the limiting position R(z) of
the rescaled total distance R 5.(f) reached as 87— 0. The char-

acteristics of R(r) depend on assumptions set on the distribu-
tions of the variables R;, T;, and M;. Below, following the
regularization scheme Eq. (34) along with a more detailed
presentation and proofs included in Refs. [32,34,35], we dis-
cuss briefly the examples which—as shall be shown in the
next section—are of practical use in modeling relaxation
phenomena in disordered materials. All the examples con-
cern the case of one-dimensional CTRW with the positive
space steps R;.

(a) Let us first assume that both R; and T; have heavy-
tailed distributions with c=c¢; and c=c,, respectively, and the
same r=a. We say that the distribution of a positive random
variable X has a heavy tail if for some ¢>0 and 0<r<1

Pr(X>x)

oo (x/c)™" (33)

As a consequence, the expected value (X) is infinite.
If the distribution of the random number M; has a heavy
tail with some ¢>0 and r=1, then for any >0

Rt/ ¢~ dt8;< 1 )”“
er o RSy, B, (36)

d d
Here “—” reads “tends in distribution” and “=" denotes the
equal distributions.

If the numbers M; have a finite expected value ((M;)
< ), then for any >0

R(t/6r) ¢ - 4:8)
—— R(t)=——. 37
1/67  sr—o0 @ AS, (37)
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(b) Assume that the expected values of both R; and T; are
finite, and (R;)=c,, (T))=c,.

If the distribution of M; has a heavy tail with some c¢
>0 and r="v, then for any +>0

R(t/6 a _ dy
Rwon  ° R(H)=——. (38)
1/67  sr—0 AB,
If (M) <c°, then for any >0
R(t/67) *% = 1
— R(t)=—. 39
/67  sr—0 ® A (39)

as.
Here “—” reads “tends with probability 1.”

The random variables B,, S,, and S, in Egs. (36)-(39)
are as follows. S, and S, are identically distributed accord-
ing to the completely asymmetric a-stable law such that
(e*kSay=¢7*", i.e., the stable distribution corresponding to the
density function s,(x;0,1,0) with o*=cos(wa/2), see the
Appendix. B, is distributed according to the generalized arc-
sine distribution with parameter 7y (i.e., the beta distribution
with parameters p=vy and g=1-7) given by the density
function

LI k) AN
——— for X ,
£, =1 TN - ) (40)

0 otherwise.

For any 0 <a, y<1 the random variables B,, S,, and S, are
independent.

Armed with the above results, we are now in position to
discuss properties of CTRW paths generated under men-
tioned constraints with the application of the formalism in
the analysis of the relaxation responses in disordered mate-
rials.

VII. EMPIRICAL AND PHENOMENOLOGICAL
RELAXATION RESPONSES

Relaxation in amorphous solids and ET processes in dis-
ordered molecular media represent nowadays intensively in-
vestigated subjects both in experimental and theoretical
physics [5,15,17,19,20,31,36,37]. In particular, a key probe
of electron dynamics in disordered systems is the time of
flight experiment (TOF) for the drift mobility. In the experi-
ment, the thin film sample is located between two blocking
contacts across which is maintained a potential drop, and a
laser flash is used to create carriers that wander towards an
appropriate electrode. During their drift through the sample,
the electrons and holes encounter a variety of traps that affect
their motion. The experiments show that in the disordered
materials, the registered transient current follows an alge-
braic decay I(r) = (wpt)‘(“”). In contrast, for Gaussian trans-
port processes, the charge carriers move at a constant veloc-
ity and after a transient time, depending on the thickness of
the sample and the applied external field, they become ab-
sorbed. In consequence, for normal transport processes typi-
cally observed in ordered materials, the current is given by a
steplike function, whereas in disordered media the current
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I(r) adheres to a universal (independent of the applied field
and sample thickness) scaling curve. Similar conclusions are
drawn from the ultrafast pump-probe laser spectroscopy and
spectral hole burning experiments which are well advanced
techniques used for nanostructures and comprise nowadays a
standard tool to determine fast carrier dynamics and spectral
and spatial diffusion of the carriers. Wide-ranging experi-
mental information resulting from the latter [15,37] has led
to the concept that the classical phenomenology of relaxation
processes breaks down in complex materials. It has been
found that the Debye behavior (5) is hardly ever found in
nature and that for many dielectrics the deviations from it
may be relatively large [11,13,15]. In the context of ET rate
constant, the experiments reflecting ensemble average over
donor-acceptor complexes have been recently analyzed
[19,20], pointing out that the nonexponential decay of the
donor population is a result of averaging over the distribution
of relaxation times and static heterogeneity, typical for the
glass-forming solvents.

For a long time a major effort has been diverted to a
purely qualitative representation of the shape of the non-
Debye dielectric functions in terms of certain mathematical
expressions without, in any way, going into a physical sig-
nificance of these representations. As pointed out by experi-
mental studies almost all dielectric data are characterized
well enough by a few empirical functions [11-13,15,16]. The
most popular analytical expression applied to the complex
susceptibility or permittivity data is given by the Havriliak-
Negami function (7). For a=1 and y<1, formula (7) takes
the form (1) of the Cole-Davidson function; for y=1 and «
<1 it takes the form (6) of the Cole-Cole function, and for
a=1 and y=1 one obtains the classical Debye form (5). Let
us note that the time-domain relaxation function ¢(z) corre-
sponding to formula (7) by means of relation (2) has the
following series representation:

i (= D)"T(y+n)

w aly+n)
n=0 F('}’)n!r[1+a('y+n)]( Pt) T (41)

dw,t) =1~

referred to the generalized Mittag-Leffler distribution. In
case of the CC function the series representation (41) is sim-
plified to

0

(=1)"
Pl =1- go I+ a1 +n)]

(wpt)a(Hn) (42)
corresponding to the Mittag-Leffler distribution. The CD re-
laxation function is referred to the tail function of the gamma
distribution with the scale parameter w, and the shape pa-
rameter vy, given by the density function

—wL(w N e fort>0
g'y(t) = F(’)’) r '

0 otherwise.

(43)

In order to derive relevant relaxation functions resulting
from cases (36)—(39), considered above, we use the follow-
ing relations. For any 0<a<1
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(e78a) = (e = (44)
and for any 0 < y<1 we have [35]
(e7"Byy = Pr(G,=k), (45)

where §;=8{=B;=1, G,=E is exponentially distributed
with mean 1, and for y<1 the random variable G, is distrib-
uted according to the gamma distribution with the shape pa-
rameter vy and the scale parameter 1. Assuming that for any
0<a,y=<1 the random variable G, is independent of S,,,
and by using the conditional-expectation tools, from formu-

las (44) and (45) one obtains
(e HSSa1B)" N = pr(G LIS, = ) (46)

and hence for R(7) of the form (36)—(39) the corresponding
relaxation function ¢(f) equals

(1) = (e RO = (e~ WALSYSB) Y _ p (A/k)G IS, = 1],
(47)

where k is an appropriate positive constant. For such a relax-
ation function we have the frequency domain response of the
general form

1

* — —i(w/w,)Gl/asa - -
¢ (0)=( PR [1 +(iw/wp)a]7’

w,=kIA,

(48)

which includes the Havriliak-Negami with its special cases
(see Table I).

The above equations (47) and (48) along with the
asymptotic properties of the total displacement, as discussed
in Sec. VI, constitute the center result of this paper. Let us
emphasize that in the framework of the CTRWSs, the math-
ematically rigorous generalization of the Debye response (5)
to the Havriliak-Negami one (7), requires introduction of a
new class of coupled memory walks in which the coupling
between the space steps and time lapses is incorporated via
the counting process L(1) [see Egs. (30) and (31)]. The only
crossover of the proposed model with classical CTRW
[1,4,5] appears in the case of the Debye and the Cole-Cole
responses in which the coupling with the finite mean values
of the random number M; (see Table I) leads asymptotically
to the same results as in the case of the decoupled CTRWs.

Interestingly, within the adopted random walk model, as-
sumptions leading to the Havriliak-Negami response require
not only the heavy-tail property of space and time incre-
ments, but also a heavy-tail statistics of the cluster number
M;. The column of Assumptions in Table I contains a de-
tailed information about the statistical character of specific
random walks proposed in the study. The rigorous probabi-
listic representation of the corresponding relaxation func-
tions is displayed in the last column (response). As it is al-
ready known from investigations in the similar context of the
complex fractional dynamics [5,6,38], in the Debye and
Cole-Cole cases, the corresponding relaxation functions re-
flect the tails of the exponential and Mittag-Leffler distribu-
tions, respectively. In two other cases, i.e., in the Cole-
Davidson  and  Havriliak-Negami  responses,  the
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TABLE 1. Special cases of the frequency-domain responses (48) (cg is a positive constant).

Assumptions
Response
R; T; M; 05*(0))
heavy tail heavy tail heavy tail Havriliak-Negami
r=a r=a r=vy <e_i(“’/w1z)Gly/aSa>
c=w,colk c=c¢y c>0 a,y<l1
heavy tail heavy tail Cole-Cole
r=«a r=«a <M]) < o0 <e—i(w/wp)El/aSa>
c=w,colk c=c¢y a<l, y=1
(Ry= (T)= heavy tail Cole-Davidson
w,col k<0 co<% r=vy (e i(@/wp)Gy)
c>0 a=1, y<l1
(Ry)= (Ty)= Debye
wpc()/k<00 co< o <M]> <o <e—i(a)/wp)E>
a=1, y=1

corresponding relaxation functions are the tails of the gamma
and the generalized Mittag-Leffler distributions, respectively.
All of them follow from one coupled memory random walk
scheme represented at the level of experimental observations
by a mixture of generalized gamma and completely asym-
metric Lévy stable distributions [see Egs. (47) and (48)].

VIII. CONCLUSIONS

Relaxation processes deviating from the usual exponential
behavior in time domain (and a classical Debye form in the
frequency domain) occur in many physical, chemical, and
biological systems, such as supercooled liquids, viscoelastic
solids, polymer melts and porous media, membranes, and
liquid crystals [15,16,40]. Anomalous relaxation kinetics is
also an important topic in the analysis of ET reactions in
polymeric and protein materials [5,17,20,23,40-42]. In the
latter, the kinetics of the charge transport has been demon-
strated to be influenced by factors arising from the static
heterogeneity and dynamic fluctuations [17,19,20,23,25] and
modeled by several different approaches [17,23,36,41,42].

Among various formalisms used to describe relaxation
processes in disordered, amorphous polymers or glass form-
ing liquids, models based on kinetic Fokker-Planck-
Smoluchowski (FPSE) equation [5,39] have been consid-
ered. Similar to the Debye description which formulates the
relaxation kinetics in terms of the Brownian motion relying
on the diffusion limit of a discrete time random walk that
leads to a standard FPSE, the continuous time walks have
been demonstrated to give rise to the fractional FPSE [5]. In
particular, it has been shown that the Cole-Cole relaxation
pattern arises naturally from the solution of a fractional
FPSE in the configuration space. Such an equation is ob-
tained in the limit of a large sequence of jump times in frac-
tal time random walks [5,30,31,39]. Another attempt to frac-
tionalizing the FPSE has been presented recently [39]. In
order to incorporate the Cole-Davidson and Havriliak-
Negami relaxation behaviors in a fractional FPSE, the au-

thors proposed a scheme of derivation of a FPSE-like kinetic
equation for an impulse response starting from the fractional
ordinary differential equation. In principle, the technique is
based on a mere replacement of the partial derivative in the
FPSE by a fractional time derivative of a given order and
does not stem from a microscopic description of the Cole-
Davidson or the Havriliak-Negami process. In contrast, the
methodology presented in this paper allows us to formulate
rigorous statistical requirements underlying asymptotical be-
havior of CTRW leading to the anomalous Cole-Davidson or
the Havriliak-Negami relaxation scenarios.
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APPENDIX

The Lévy-stable distributions are defined by the property
that the normalized sum of independent random variables
X, ,X, distributed according to the same a-stable distribution
has the same distribution as each component, i.e., the prop-
erty that for any a,b>0

d

aX1+bX2=CX+d, (Al)

d
for X distributed as X; and some constants ¢ >0,d, where =
denotes equality in a distribution sense. The stable distribu-
tions are the only one possesing the above property. Each of
them can be described by the probability density function.
Real constants ¢,d in Eq. (Al), that allow for rescaling and
shifting of the initial probability distribution, depend on a,b.
It is a well-known fact that c=(a®+b%)"® for some «
€ (0,2]. The parameter « of a stable distribution is called the
stability index. To indicate a stable distribution one needs
three other parameters; however, they can be chosen in vari-
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ous ways [7,43]. In this paper we adhere to the parameter-
ization for which the characteristic function of the stable law
with the index of stability « is given by

P(k) = exp[— Ua|k|a<1 —iB sgn(k)tan ?) + i,uk] ,

fora#1,

P(k) = exp{— 0|k|(1 + i,B% sgn(k)ln|k|> + i,uk], for a=1,

(A2)

with the skewness parameter 8 € [—1,1], the scale parameter
o € (0,%), and the shift u e (—o,%). Thus ¢(k) corresponds
to the four-parameter stable density function s,(x; o, 8, u):

+00

P(k) = e s (x50, 8, m)dx. (A3)

—o0

The analytical expressions of the stable probability density
functions [corresponding to Eq. (A2)] can be given only in
few cases. In particular, for =2 and any B (e.g., 8=0), we
get the Gaussian probability density with mean w and vari-
ance 207

PHYSICAL REVIEW E 72, 061101 (2005)

1 ( (x— ,u)z)
expl — ,
20'\//7_7' P 45°

whereas a=1, =0 and a=%, B=1 yield the Cauchy distri-
bution

$5(x;0,0, ) = (A4)

(i 00) = L (A3)
S UM = m(x—w)?+0*
and the Lévy-Smirnov (x> u) distribution
12
o o
: ,l, - = _ —3/2X (_—>’
siplxso, 1, u) (277) (x-w) eXp 20— p)
(A6)

respectively.

In general, the stable probability density functions with
a# 1 are known to have an asymptotic power-law behavior
5a(x) ~ x|~ as |x| — 0. (For B=1 or —1 this property con-
cerns only x tending to © or —, respectively.) The stability
property implies that the sum of independent stable variables
X,,X, sampled from a given distribution s,(x;o,8,u) has
again a stable density function s,(x;o’,8",u’) with indices

o' =(of + O'g)”a,

_ Bio1 + B0y
ol + 05

B!

M=t . (A7)
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